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Oscillatory Zoning �OZ� is a phenomenon exhibited by many geologically formed crystals. It is character-
ized by quasiperiodic oscillations in the composition of a solid solution, caused by self-organization. We
present a model for OZ. The growth mechanism applied includes species diffusion through the solution bulk,
particle adsorption, surface diffusion, and subsequently desorption or incorporation into the crystal. This
mechanism, in particular, can provide the synchronization effects necessary to reproduce the layered structure
of experimentally obtained crystals, lacking in other models. We conduct a linear stability analysis combined
with numerical simulations. Our results reproduce the experimental findings with respect to the patterns formed
and a critical supersaturation necessary for OZ to occur.
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I. INTRODUCTION

Oscillatory zoning �OZ� is a phenomenon describing re-
petitive composition variations of binary solid solutions
along their core-to-rim profile. Traditionally, it was believed
to be of rare occurrence and its existence was ascribed to
variations of external parameters controlling the crystal
growth, like temperature or concentration fluctuations. How-
ever, the development of more sophisticated observation
techniques facilitated the detection of this phenomenon in all
major classes of minerals and a wide range of geological
environments �1�. In addition to naturally obtained samples
OZ was experimentally reproduced in the absence of external
fluctuations. Reeder et al. �2� were able to grow calcite crys-
tals exhibiting OZ of the Mg dopant and Putnis et al. �3–5�
obtained end-member zoning in �Ba,Sr�SO4 crystals.

The experimental setup used by Putnis et al. �3–5� is
sketched in Fig. 1. It consists of two reservoirs, one filled
with an aqueous solution of BaCl2 /SrCl2 and the other with
Na2SO4. The two reservoirs are connected by a column filled
with a silica gel to inhibit convective transport. With the
beginning of the experiment the reactants from the reservoirs
start to diffuse toward each other through the column. As the
diffusion fields of Ba2+ and Sr2+ from one reservoir and
SO4

2− from the other reservoir exceed the nucleation thresh-
old product in the vicinity of the column center, nuclei form.
The solution is then strongly supersaturated with respect to
the freshly generated crystal seeds and the growth com-
mences in a layer of few millimeters in width �6�. After
approximately one month the experiment was terminated.
The obtained crystals exhibited OZ although no external
fluctuations were imposed on the system. Thus it has been
clearly shown that OZ can be also attributed to intrinsic
mechanisms resulting in spontaneous structure formation �7�.
The wide range of different crystals concerned suggests a

certain universality of the underlying mechanism.
The general principle causing OZ is the autocatalytic or

inhibiting interaction of the substrate with the end member
concentration in melt or solution �8�. If, for example, the
crystal is rich in component A, this will lead to increased
growth of this component in an autocatalytic way. Its supply
will eventually be limited by diffusion. During this phase the
disfavored component B will accumulate in the solution,
leading to a slight increase of B deposition. However, any
small increase in B will show autocatalytic effects, whereas
the growth of A slowly decreases. The combination of a rela-
tively high B concentration in combination with the auto-
catalytically increasing growth rate will then lead to a phase
of B dominated growth. With this, A and B have switched
roles and one half cycle is completed. If the interaction of
those two processes is interrupted, for example by stirring,
no OZ will be observed �2�.

The specific interaction of autocatalytic growth and com-
ponent accumulation is subject to the scenario employed and
gives rise to different nonlinear schemes. The first quantita-
tive model derived by Haase et al. �9� describes self-
organized oscillatory zoning from the melt applying moving
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FIG. 1. Experimental setup in which oscillatory zoned crystals
of �Ba,Sr�SO4 were synthesized in Refs. �3–5�. The reactants coun-
terdiffuse in the column and �Ba,Sr�SO4 crystals nucleate. The up-
per window sketches the structure of the nucleation zone and the
length scales involved.
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boundaries and a generically autocatalytic growth term. In a
subsequent series of publications Wang and Merino intro-
duced the boundary layer approximation for the treatment of
zoned crystals grown hydrothermally �10� from solution �11�
and from melt �12�. Later, nongeneric growth terms derived
from the physics of growth processes from the melt were
introduced by L’Heureux �13� using constitutional under-
cooling and by Wang and Wu �14� employing the excess
enthalpy of crystallization.

The most sophisticated models currently available for
end-member OZ from solution have been developed by
L’Heureux et al. �15–17�. These models apply the boundary
layer approximation, as well, and in addition to the otherwise
deterministic nature the influence of noise on the onset of OZ
is studied. The nonlinear growth term applied is phenomeno-
logically obtained from the local probability to find a match-
ing kink site as proposed by Markov �18�. However, the local
nature of this mechanism does not provide the synchroniza-
tion effects necessary to describe homogeneous growth
fronts resulting in the ringlike composition oscillations found
in the experiment �17�.

In this paper we present a boundary reaction diffusion
model for OZ in binary solid solutions grown from aqueous
solution. We abandon the boundary layer approximation and
explicitly treat the diffusion above the crystal without further
approximations. Furthermore, the growth rate, being the cen-
tral ingredient of every model, is derived directly from con-
siderations of the physical growth mechanisms. We apply the
concept of layer-by-layer growth under continuous genera-
tion of new steps which is, e.g., relevant for growth by screw
dislocations or two-dimension �2D� nucleation. The growth
mechanism results as an interplay of different processes in-
cluding bulk diffusion, adsorption, surface diffusion, and
eventually desorption or incorporation into the crystal. The
nonlinearity necessary to generate OZ is obtained by the
composition dependence of the mean lifetime of adatoms in
the adsorbed layer or, equivalently, the interaction of ada-
toms with the crystal surface.

In Sec. II the different aspects of the model are intro-
duced. The resulting model equations are summarized in Sec.
III. Then, Sec. IV analyzes this model close to the stationary
point. Section V presents its numerical analysis, including all
nonlinear effects. Finally, the obtained results are discussed
in Sec. VI and concluded in Sec. VII.

II. PHYSICAL BACKGROUND

The model under consideration describes the diffusion
processes in the bulk solution, the growth process following
from the coupling between crystal and solution, and the evo-
lution of the crystal composition.

A. General

Based on the slow crystal growth observed in the experi-
ments �3–5�, we apply screw dislocations as the step gener-
ating mechanism and describe the subsequent growth process
via step advance. Screw dislocation driven growth can cross
over to two-dimensional nucleation, as shown by Pina et al.

�4�. However, this will not affect the validity of the model
because the specific process of step generation is not of im-
mediate importance. We assume that after nucleation the
crystal surface will reach a steady state when the density of
the step generating islands or spirals does not change any
more, because of coalesence of the terraces according to
�19�. A refined model would be necessary to take into ac-
count any effects related to anisotropic growth as found by
Pina et al. �20� or to account for the curvature of small spi-
rals. Since we are interested in the basic mechanisms we
refrain from such detailed modelling and just consider infi-
nite step trains which on average are a distance l apart; see
Fig. 2. Typically, l is in the nanometer regime. The coordi-
nates z, characterizing the distance from the crystal surface
and x, orthogonal to the steps, are indicated. This describes a
one-dimensional �1D� crystal surface which starts at z=0,
i.e., the total system is a 2D system.

In general, quantities like the solute concentration C�x ,z�
depend on x and z. Conceptually, the x dependence can be
separated into two different contributions. First, there exists a
periodic contribution with quasiperiod l. It expresses the fact
that the concentration close to the steps will be smaller.
However, in the limit, considered below, only the concentra-
tion, averaged over the length scale of l, will enter. Therefore
this x dependence of C�x ,z� is not relevant. Second, there
can be variations on length scales much larger than l. Experi-
mentally, it is observed that the growth behavior does not
change along the surface of one crystallite of size 150 � at a
given time. Furthermore, a straightforward extension of the
stability analysis, presented below, shows that the maximum
instability for fluctuations along one crystal surface are for
zero wave vector. Thus it is realistic to hope that the leading
mechanism of OZ can be derived from study of the z depen-
dence alone. In the present work, we will therefore neglect a
possible long-range x dependence and restrict ourselves to
the 1D model.

In the present paper we deal with a two species model
�i=1,2� for the crystal growth from solution �Ba and Sr,
respectively�, thereby neglecting possible variations of the
SO4

2− concentration. This can be justified in two ways. First,
using the OZ model by L’Heureux �15� we have verified that
a system with artificially fixed SO4

2− concentration exhibits
basically the same dynamics �21�. Second, it describes also

FIG. 2. Scheme of the 2D-model. The concentration is averaged
over a sufficiently large x region, giving rise to a 1D model with a
concentration C�z�.
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the solid state formation for the three component system
SO4

2−, Ba, and Sr, studied by Putnis et al. when the concen-
tration of SO4

2− is sufficiently high. The mole fraction of
component 1 on the crystal surface is denoted by � �0��
�1�. Throughout this work we assume the same molar vol-
ume for both species in the solid phase.

B. Crystal-solution interface

The central element of this model is the coupling term
between the crystal growth rate and the surface species con-
centration. We have used the classical approach by Gilmer et
al. �22� which itself builds on the BCF theory �19�: solute
particles adsorb on the crystal surface and diffuse along it. If
before desorbing they come into contact with a step on the
crystal surface, they are incorporated. If they do not meet a
step in time, they desorb and become part of the solution
again.

On their path along the crystal surface the adatoms expe-
rience many different local environments depending on the
crystal composition. The mean energy difference Ei��� of the
adsorption reflects the interaction with the crystal surface and
the solvation process. Within the mean-field description it
can be approximated by a linear combination of the different
adsorption energies:

E1��� = �E11 + �1 − ��E12 − E1
sol,

E2��� = �E12 + �1 − ��E22 − E2
sol. �1�

Here, Eij =Eji is the adsorption energy for component i on a
surface formed by component j and Ei

sol represents the sol-
vation energy of species i.

In the subsequent mathematical treatment it is useful to
rewrite expressions �1� in the symmetrized form

E1��� = 2�− �� + �1 − ��� + ��kBT + 	Em
ad,

E2��� = 2��� + �1 − ��� − ��kBT + 	Em
ad, �2�

where the dimensionless potentials

� = �E22 − E11�/4kBT ,

� = �2E12 − �E11 + E22��/4kBT ,

� = �E2
sol − E1

sol�/4kBT , �3�

and the mean homogeneous adsorption energy

	Em
ad = �1/2��E11 + E22� − �1/2��E1

sol + E2
sol� �4�

have been introduced. Here, kB is the Boltzmann constant
and T the temperature. The potential � represents the asym-
metry between homogeneous adsorption energies, whereas �
is a measure for the preference of homogeneous over hetero-
geneous adsorption. We consider the case 0����. The po-
tential � can be assumed to be nonnegative due to symmetry
reasons; see Eq. �3�. The limit �=� implies E12=E22, so that
the crystal growth properties of species 2 are independent of
the composition of the crystal surface. The case �
�, cor-

responding to a different type of crystal growth instability, is
beyond the scope of the present paper. The last parameter �
reflects the solution energy difference of the two types of
particles.

For the crystal growth two time scales are of primary
importance. First, the inverse of the adsorption time �a de-
notes the rate with which a particle in the solution layer
above the crystal surface adsorbs. Thus, aCi

s /�a is the par-
ticle flux on the crystal surface where a is the typical dis-
tance between atoms and Ci

s=Ci�z=0� the mean concentra-
tion of component i in the solution just above the crystal
surface. We assume that �a is the same for both species.
Second, �d,i is the mean residence time of adatoms on the
surface. Detailed balance between both time scales requires

�d,i��� = �aexp�− Ei���/kBT� . �5�

Thus the composition dependence of �d,i is due to the com-
position dependence of the adsorption potentials Ei���. From
�d,i the mean diffusion length li

s can be obtained using the
Einstein relation

li
s��� = �Ds�d,i���, = �Ds�aexp�−

1

2
Ei���/kBT� . �6�

The adatom diffusion coefficient Ds characterizes the el-
ementary atomic movements of the adatoms on the crystal
surface. We also assume that Ds is the same for both the
species.

By substitution of equation �2� one explicitly obtains for
the mean diffusion length

l1
s��� = lDf�exp�− �− �� + �1 − �����,l2

s���

= lDf�
−1exp�− ��� + �1 − ����� �7�

with

lD ª
�Ds�aexp�− 	Em

ad/2kBT� �8�

and

f� ª exp�− �� . �9�

Now the partial growth rate ri of species i can be ex-
pressed as a combination of the adsorption flux and a success
factor qi, describing the fraction of adatoms that will actually
contribute to crystal growth, whereas the others desorb:

�10�

Following Ref. �15� we have neglected a term, representing
the equilibrium concentration which is irrelevant under sig-
nificant supersaturation as present in the experiment. The
adsorption of a particle is hindered by the breakup of the
solution shell and consequently takes longer than a normal
diffusion step in the solution bulk. It is reasonable to assume
that the adsorption time scale �a is much larger than the
typical time scale a2 /D of free diffusion in the solution, i.e.,
�D�a�a. Since l is also a microscopic length scale one may
even expect that �D�a� l. Then the location of successive
adsorption processes of the same particle are uncorrelated
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with respect to the position of the steps and this simple
probabilistic approach becomes justified.

The growth is supported by surface diffusion from both
sides of a step. In the limit li

s� l the atoms adsorbing within
the distance li

s of a step will typically contribute to crystal
growth, whereas all the remaining adatoms will desorb after
some time. Therefore, the probability to meet a step is of the
order of li

s / l and can more precisely be expressed �22�,

qi��� =
2li

s���
l

. �11�

For arbitrary ratio li
s / l one obtains an additional factor

tanh�l /2li
s� which in the limit li

s� l turns out to be unity �22�.
For later convenience we gather the system constants into

a characteristic time

� =
l�a

2lD
�12�

and defining

�i��� = �
lD

li
s���

�13�

the individual growth rates can be written

ri��,Ci
s� =

aCi
s

�i���
. �14�

Then the resulting continuity relation at the crystal surface
reads

Di� �Ci�z,t�
�z

�
z=0

= ri��,Ci
s� . �15�

This expresses the particle flux, on the left side, from the
solution to the crystal and, on the right side, in the continu-
ous solution close to the surface. An analogous boundary
condition has been used in the classical work by Gilmer et
al. �22�.

C. Bulk solution

The description of the bulk solution follows the following
picture: At the beginning of the experiment the components
begin to diffuse from the reservoirs into the gel column. As
their diffusion profiles begin to overlap close to the middle of
the column and the nucleation barrier is overcome, crystal-
lites form. Due to the narrow nucleation zone �6� these nuclei
must act as an effective sink with respect to the current of
Ba2+, Sr2+, and SO4

2− from their reservoirs.
Based on these considerations, this model is set up as a

source-sink system with a gradient in between. In this aspect
it differs distinctly from the models proposed by L’Heureux
et al. �15–17�, where the crystal is considered to be growing
through a homogeneously supersaturated medium. Conse-
quentially an analogous boundary layer approximation can-
not be applied to the present system.

Experimentally, the following scales are observed �3�: �i�
Growth velocity V	10−8 cm/s as estimated from the crystal
thickness and the total growth time. �ii� Thickness Hoz

	10−5 cm of individual layers. �iii� Time Toz	Hoz/V
	105 s during which one pattern layer is formed. �iv� Bulk
diffusion constant D	10−5 cm2/s.

From these observables two important length scales can
be estimated. �i� The length scale Loz characterizes the spatial
variations of the species distribution caused by oscillatory
zoning. It is given by Loz	�DToz�0.5	1 cm which is much
larger than the crystal size. This is consistent with the fact
that the growth behavior does not change along one crystal
surface, because during times of small change in � the infor-
mation about the local surface concentration can spread over
the whole region. Besides, it rationalizes the mean field ap-
proach discussed below. �ii� Furthermore, one may wonder to
which degree the motion of the solid phase boundary caused
by crystal growth can affect the diffusion fields. For small
length scales the concentration field is determined by diffu-
sion �	�Dt�0.5� whereas for large scales it is determined by
the �nearly� constant growth of the phase boundary �	vt�.
The crossover length scale Lv for which both processes are
equally relevant can be thus estimated as Lv	D /V which for
the present situation is close to 103 cm. This scale exceeds
the system size by orders of magnitude.

Because of this estimate the effect of the growth induced
motion of the crystallites boundaries on the solute diffusion
is ignorable and the crystal surface can be regarded as fixed
with respect to the mathematical model.

Naturally, in the case of rapid solidification or in stirred or
moved media this boundary layer approximation is well jus-
tified �23–26�.

Finally, we choose the external boundary condition such
that the reservoir is characterized by a constant influx Gi of
solute into the system at z=L where L is an arbitrary large
length scale.

D. Surface composition evolution

To complete the model, a governing equation for the evo-
lution of the crystal surface composition is necessary. As-
suming a homogeneous distribution of the components
throughout the surface, the composition change with the next
time increment dt can be expressed as a function of the cur-
rent composition � and the relation of the growth rates ri:

d�

dt
= a2��1 − ��r1��,C1

s� − �r2��,C2
s�� . �16�

This relation reflects mass conservation and has already been
used in previous work on OZ �15�.

III. THE BOUNDARY-REACTION-DIFFUSION MODEL

The 1D formulation of the model discussed above can be
described as follows. Diffusion of the components i=1,2
through the solution is considered within the region z
� �0,L� and is described by the equation

�Ci�z,t�
�t

= Di
�2Ci�z,t�

�z2 , �17�

where L should be chosen large enough to satisfy �C /�t=0.
At the external boundary z=L the influx of both the compo-
nents is fixed
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Gi = Di� �Ci�z,t�
�z

�
z=L

. �18�

At the crystal surface �z=0� the diffusion flux and the rate of
the crystal growth are related by �using expressions �14� and
�15��

Di� �Ci�z,t�
�z

�
z=0

=
aCi

s

�i���
. �19�

The time scales �i, as defined in Eq. �13�, are given by

�1��� = �f�
−1exp�− ��� + �� + �� ,

�2��� = �f�exp���� − �� + �� . �20�

The constants � and f� have been defined in Eqs. �12� and
�9�, respectively. Finally, for the solid composition evolution
one obtains �compare Eq. �16��

d�

dt
= a2��1 − ��

aC1
s

�1���
− �

aC2
s

�2���� . �21�

In order to complete the description of OZ it is necessary
to calculate the resulting structure of the crystal, i.e.,
�crystal�zcrystal�. For this purpose we introduce ��t� as the lo-
cation of the crystal surface at time t in a coordinate system
which does not move with the crystal surface. Defining tz as
the time for which ��t�=zcrystal one has

�crystal�zcrystal� = ��tz� . �22�

The function ��t� can be easily obtained from

d�

dt
= a3� aC1

s

�1���
+

aC2
s

�2���� , �23�

where the left side can be interpreted as the time-dependent
growth velocity proportional to the cumulative species flux
at the surface. To justify expression �23� we note that for the
crystal interface of unit area to advance the distance � the
total number of species atoms equal to � /a3 is required.
This amount of atoms during the time interval dt is delivered
by the species diffusion flux, so

d�

a3 = 
D1� �C1�z,t�
�z

�
z=0

+ D2� �C2�z,t�
�z

�
z=0
�dt .

Whence expression �23� follows directly by virtue of �19�.

IV. STABILITY ANALYSIS

The following two sections analyze the behavior of the
crystal growth within the boundary-reaction diffusion model
specified in the previous one. Particularly we study the crys-
tal growth properties close to the stationary point by means
of linear stability analysis.

A. Stationary solution

Both, Eqs. �17� and �21� describe the time dependence of
the underlying system. For each equation and for fixed � the

disappearance of the time derivative yields some ratio
C1

s /C2
s , respectively.

Evidently, �d /dt���t�=0 implies �using f�
2e�=1 for sim-

plicity�

C1
s

C2
s =

�

1 − �

�1���
�2���

=
�

1 − �
exp���1 − 2��� � N���� .

�24�

This nullcline N���� is shown in Fig. 3. It possesses a de-
creasing branch located in the region �� ��− ,�+�,

�± ª
1

2
1 ±�� − 2

�
� , �25�

when the parameter � exceeds the critical value �c=2. For
��2 the function N���� is monotonously increasing. In the
stationary case the presence of a decreasing branch implies
that different values of � are associated to the same C1

s /C2
s .

A stationary solution of the diffusion equation Eq. �17�,
fulfilling the boundary conditions Eqs. �19�, reads

Ci�z� =
Gi�i���

a
+

Gi

Di
z , �26�

giving the surface concentration

Ci
s =

Gi�i���
a

. �27�

This yields �using again f�
2e�=1�

C1
s

C2
s =

G1

G2

�1���
�2���

=
G1

G2
exp���1 − 2��� � NG��� �28�

in the stationary limit. The function NG��� is also shown in
Fig. 3. Both the functions N���� and NG��� intersect at �
=�st given by

FIG. 3. Stationary functions N���� and NG��� vs the solid state
composition �. The chosen parameters are �=3, f�

2e�=1, and G1

=G2. For this choice the stationary value �st is 0.5. The dashed
curve illustrates the typical construction of the limit cycle for the
developed instability.
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�st =
G1

G1 + G2
�

G1

G
�29�

thereby defining the total incoming flux G=G1+G2. It de-
fines the stationary point of the present system for which
both Eq. �17� and Eq. �21� have vanishing time derivatives.

Now we discuss some immediate consequences of the
properties of the functions N���� and NG���. For this purpose
we consider the �� ,C1

s /C2
s� plane. These functions separate

different regions of the phase plane. Naturally, a point on this
plane does not describe the complete system configuration
because the diffusion is reduced to C�z=0�. For C1

s /C2
s


N���� the time derivative of ��t� is positive and vice versa.
This means that a system above N���� is driven toward
larger �, whereas a system below behaves oppositely.

In case of a standard relaxation oscillator the equation for
�̇ would be complemented by an equation for �d /dt�
��C1

s /C2
s�. Such an equation does not exist for the present

model. However, an implicit time evolution of �C1
s /C2

s� is
expressed by Eq. �28�. When �d /dt���t� is very small the
diffusion field can adjust to the boundary conditions. This
way the ratio C1

s /C2
s will be adjusted until Eq. �28� is ful-

filled. In particular, C1
s /C2

s will decrease for �C1
s /C2

s�

NG��� and vice versa. This is reflected by the arrows in
Fig. 3.

The simplest form of a possible time evolution giving rise
to oscillatory behavior is shown in Fig. 3. If there is a time-
scale separation between the � variations and the variations
of the surface concentrations Ci

s the system would move
from the left maximum of N���� to the right until �̇
	�d /dt��C1

s /C2
s�. Then the system has time to adapt �C1

s /C2
s�

to the present value of � thereby moving down along the
N���� curve. Once the minimum is reached �d /dt��C1

s /C2
s�

will drive the trajectory away from N���� quickly resulting
in ��̇ � � ��d /dt��C1

s /C2
s�� which will move it toward the left

branch of N����. Then the second half of the oscillation may
start. As will be shown below via numerical simulations the
actual behavior is somewhat different. In any event, the gen-
eral possibility of oscillatory behavior requires a nonmonoto-
nous behavior of N����, i.e., �
�c=2. However, the linear
stability analysis will reveal that this condition is not
sufficient.

B. Linear stability analysis

The stability of the stationary crystal growth is analyzed
with respect to infinitesimal perturbations of the solute dis-
tribution in the solution and the solid state composition
around �=�st and the corresponding values of Ci

s, given by
Eq. �27� which will be denoted Ci

st. We choose

Ci�z,t� = Ci
sexp��t − piz� �30a�

and

��t� = � exp��t� . �30b�

Here Ci
s and � are the amplitudes whereas the complex

wave number pi=Re pi+ i Im pi describes the decay of the
concentration perturbations above the crystal surface. It re-

quires Re pi
0. The instability arises when the real part of
the perturbation increment � becomes positive. The chosen
form �30� is compatible with the time evolution close to the
stationary point.

The infinitesimal form of Eq. �21� is of primary interest. A
short calculation gives

�

a2G
= − 1 + �st�1 − �st��2� +

C1

C1
st�

−
C2

C2
st�

� . �31�

The relevant ingredient Ci
s / �Ci

st�� can be obtained from
the boundary condition �19� as follows:

Ci
s

Ci
st�

=
a � ln �i/��

a + Dipi�i��st�
. �32�

Finally, from Eq. �17� one has

� = D1p1
2 = D2p2

2, �33�

i.e., the relation between the pi and �. Combining Eqs.
�31�–�33� and using the specific dependencies �20� we finally
get

�

a2G
= − 1 + �st�1 − �st���� + ��

D1�1p1

D1�1p1 + a

+ �� − ��
D2�2p2

D2�2p2 + a
� . �34�

How does the nature of the stability depend on the total
flux G? One always has Ci

st�G. Furthermore, in the limit of
large G one also obtains ��G and, using Eq. �33�, pi��G.
As a consequence one has Ci�Ci / pi��G. Thus, Eq. �31�
boils down to

� = a2G�− 1 + �st�1 − �st�2�� . �35�

One has �
0 exactly when �st� ��− ,�+�, i.e., �st is on the
unstable branch of N����. In contrast, for G→0 one has �
=−a2G�0. This can be seen from Eq. �34� because in this
limit also pi→0. Thus there exists a critical flux Gc such that
Re �=0 for G=Gc and Re �
0 for G
Gc. Since �= pi=0
cannot be a solution from Eq. �34� the disappearance of Re �
implies that �is purely imaginary.

Our goal is, first, to determine Gc explicitly and, second,
to understand its dependence on the model parameters on a
more qualitative level, i.e., Gc=Gc�� �� ,� , . . . �.

C. Exact solution

From Eq. �34� the critical value Gc can be determined. As
shown in the Appendix the critical value Gc in parametric
form is given by the expression

Gc =
1

�D1D2�2

e−��1−2��−��

�2��1 − ��
� �� + ��	

��2�	 + 1�2 + 1

+
�� − ��/	

��2�/	 + 1�2 + 1
�−1

. �36�

Here the variable � is the root of the equation
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�� + �����2�	� + �� − �����2�/	� =
1

��1 − ��
, �37�

where the function ��x� is defined

��x� =
x�x + 1�

�x + 1�2 + 1
�38�

and the function 	��� is

	��� = 	0.5e
��1−2��/2 �39�

with the prefactor 	0.5 given by the expression

	0.5
2 =�D1

D2
f�

−2e−�. �40�

Since ���, both terms on the left-hand side of Eq. �37�
are nonnegative increasing functions of the argument �. The
maximum of their sum is equal to 2� whereas the minimum
of the right-hand side at �=0.5 is equal to 4. So, we obtain
again the condition �
�c necessary for unstable behavior. In
this case for 2���1−��
1 Eq. �37� possesses only one root
which together with �36� determine the lower boundary Gc of
the instability region. In the close vicinity of the threshold,
0�2���1−��−1�1 �for �	0.5� this equation can be
solved analytically, giving the expression

� 	
��� + ��/	0.5 + �� − ��	0.5�

4�2�2���1 − �� − 1�
�41�

and thus

Gc 	
e−2

32�D1D2�2

��� + ��/	0.5 + �� − ��	0.5�2

�2���1 − �� − 1�3 . �42�

For the system with �=0 the asymmetry of the solubili-
ties substantially increases the critical diffusion flux Gc. In-
deed, since the species diffusivities in solutions are typically
of the same order, D1�D2, the species solubility difference
reflected in the coefficient f��1 or f��1 matches �see Eq.
�40�� the inequality 	0.5�1 or 	0.5�1, respectively. For
�	� the term ��−��	0.5 in �42� can be neglected and an
increase of 	0.5 gives rise to a remarkable decrease in Gc.

Equation �37� was solved numerically to analyze the sys-
tem behavior far from the threshold �c=2. For �=3 the re-
sults for the � dependence of Gc are presented in Fig. 4. In
addition we have included N���� in Fig. 4. The upper frame
exhibits the results for �=0, whereas the lower one contains
the strongly asymmetrical case with �=�=3.

The symmetrical system exhibits minimal Gc when the
species have the same solubility. A difference in solubility as
reflected by the change of 	0.5 by a factor of ten causes Gc to
increase by a similar factor. For such 	0.5 the Gc��� curves
become asymmetrical with respect to �=0.5. Exactly this
case should be characterized by the instability forming the
limit cycle constructed in Fig. 3 following the standard no-
tions of relaxation oscillations.

The system behavior for ��� is distinctly different as
can be seen in the lower fragment of Fig. 4. In particular, for
�=3 a tenfold increase in 	0.5 induces a hundredfold drop in
Gc. It should be noted that 	0.5=1 corresponds to �=� /2

which is nonzero here. Furthermore, for 	0.5=10 the depen-
dence Gc��� is highly asymmetrical and passes many orders
of magnitude. For large values of 	0.5, the left part of the
decreasing branch of N���� can be unstable whereas the right
half can be stable. In this case the limit cycle of the devel-
oped oscillations deviates substantially from the classical
form.

D. Instability mechanism: Qualitative description

It is possible to obtain a better understanding of how the
degree of instability depends on the system parameters. We
use sufficiently large G such that a� �Dipi�i�. The values of
�i are always analyzed at �=�st. For reasons of simplicity we
also assume D1=D2=D �implying p� p1= p2�. Then we can
rewrite Eq. �32� as follows:

Ci
s

Ci
st�

=
a

pD

� ln �i/��

�i
�43�

thereby

C1
s

C1
st�

−
C2

s

C2
st�

=
a

pD
�−

�

�1
−

�

�2
−

�

�1
+

�

�2
� . �44�

The cumulative effect of these terms gives rise to a decrease
of the real part of �. Thus, concentration fluctuations always
tend to stabilize the stationary point. It is interesting to ana-
lyze the impact of the asymmetry �. In what follows we will

FIG. 4. The critical value of Gc vs � for �=3 and some different
	0.5 representing the difference in the species solubilities. The up-
per frame corresponds to a symmetric system with �=0, the lower
one to a strongly asymmetrical one with �=3. The dashed curves
correspond to the function N����.
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restrict ourselves to the case �=�, where C2=0 and the
damping is due to the concentration fluctuations of species 1.
Changing from �=0 to �=� the relevant term in Eq. �31�,
characterizing the concentration fluctuations and thus the re-
duction of the real part of � changes from −�1/�1+1/�2� to
−2/�1 which corresponds to a change by a factor of 2 / �1
+�1 /�2�. Note that

�1/�2 = 	0.5
2 exp���1 − 2�st�� . �45�

When 	0.5�1 the result of the concentration fluctuations is
thus reduced which has a positive cumulative effect on the
instability onset and, as a result, Gc should be decreased.
Moreover, this ratio increases as � decreases. This rational-
izes the asymmetry of the Gc��� dependence with smaller
values located on the left-hand side. Exactly these features
emerge from the solution of the exact equation �34�.

V. NUMERICAL ANALYSIS OF THE NONLINEAR
DYNAMICS

When the growth becomes unstable nonstationary patterns
in the solution and the induced pattern in the crystal bulk
develop. In order to analyze their characteristic properties the
system of equations in Sec. III was studied numerically.
First, we introduced the spatial and temporal scales lsc and
�sc,

lsc = �D1D2�

a2 �a, �sc = �D1D2�

a2 �� , �46�

and, in addition, a parameter having the dimension of con-
centration

Csc =
1

a�D1D2�
. �47�

Then we rescaled time t and spatial coordinate z as well as
the species concentrations Ci in these units

t → �sc · t, z → lsc · z, Ci → Csc · Ci.

For the sake of simplicity we have kept the same designa-
tions for these variables. The fluxes Gi, G were also mea-
sured in units of

Gsc =
1

�D1D2�2
,

namely,

�G,Gi� → Gsc�G,Gi� . �48�

Then the obtained system of dimensionless equations was
integrated using the Crank-Nicholson method. The temporal
and spatial steps of integration as well as the system size L
were chosen such that the dynamics be practically indepen-
dent of their particular values.

The following four specific cases were analyzed to dem-
onstrate characteristic features of the physical system. The
first two ones are the symmetrical model with parameters �
=3, �=0, 	0.5=1, and �st=0.5 at the initial stage. They differ

in the total diffusion flux G=1 and G=50. The case with
G=1 describes the system dynamics not too far from the
instability boundary Gc	0.6 �see Fig. 4�. Under these con-
ditions the instability was expected to demonstrate quasihar-
monic behavior. The case G=50 corresponds to the substan-
tially nonlinear stage of the instability.

The other pair of cases are the asymmetrical model with
�=3 and �=3 being actually a limit situation that can be
considered accurately within the present analysis. To single
out the effects caused by nonzero values of � we restrict
ourselves to 	0.5=1 and �st=0.3. Correspondingly, Gc��� is
minimal for this value of �. The values of G are set to 0.5
and 5.

Figure 5 visualizes the surface dynamics for the first two
cases. As seen in the frames of its left column, the oscilla-
tions of Ci

s and � are rather harmonic as expected. The re-
sulting limit cycle is shown in the lower left frame. Again, as
expected, this cycle is of elliptical form located along the
unstable branch of the nullcline N����. Even for G=1 which
is close to Gc	0.6 the oscillations are already determined by
the nullcline.

For G=50 the dynamics become relaxationlike and �
plays the role of the fast variable. As seen in the right column
of Fig. 5, the time pattern ��t� consists of a sequence of slow
motion fragments joined by rather sharp jumps. In agreement
with classical relaxation oscillations the fragments of slow
dynamics correspond to the system motion along stable
branches of N���� whereas the sharp jumps describe the fast
transitions between these branches. However, the surface

FIG. 5. �Color online� Dynamics of the symmetrical system �
=3, �=0, 	0.5=1, �st=0.5. The left column has the results obtained
for G=1 which is larger than Gc=0.6, see Fig. 4. The right column
exhibits the results for G=50.
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species concentrations exhibit anomalous behavior from the
standpoint of classic relaxation oscillations. Most impor-
tantly, C1

s /C2
s display some remarkable variations during the

fast dynamics phase of �. This is still reminiscent of the
result of the linear stability analysis where Ci

s��. As a
result the lines of the limit cycle connecting the increasing
branches of the nullcline N���� are not horizontal but in-
clined to the � axis at a certain visible angle. It should be
noted that this inclination is not a standard consequence of
the finite ratio between the time scales of fast and slow dy-
namics because, otherwise, the form of these curves would
deviate form the straight lines substantially. It is due to the
existence of the simultaneous change in both the species con-
centrations during the period of fast motion.

The asymmetrical system with �=3, �=3 is depicted in
Fig. 6 for G=0.5 and G=5. The basic feature distinguishing
this system from the symmetrical one is the strong asymme-
try of the critical diffusion flux with respect to �=0.5. In
particular, as shown in Fig. 4 for G=0.5 only the left half of
the decreasing branch of the nullcline N���� is unstable
whereas for G=5 the instability region is located approxi-
mately within the boundaries 0.2���0.6. The resulting
limit cycles are shown in the lower frames of Fig. 6. For G
=0.5 the stationary point is not too far from the instability
boundary and the limit cycle is located in a rather narrow
neighborhood of the unstable branch of N����. For G=5 the
separation of the system dynamics into the slow and fast
motion fragments becomes pronounced. In this case the limit
cycle embraces even an increasing branch of the N����.
However, its lower part after passing the minimum near �

=0.8 continues to follow the formerly unstable fragment of
the decreasing nullcline branch until it reaches the instability
boundary at �	0.6. Only after passing this point it leaves
the branch and jumps to the opposite stable branch of N����.
This effect of “adhesion” to the unstable branch of N���� is
of another nature than the well known “French duck” frag-
ment of the limit cycle for standard relaxation oscillations
�see, e.g., Ref. �27��, caused by the close proximity of the
stationary point to the extreme of the nullcline.

The two time patterns of the observed oscillations deviate
substantially in shape both from the quasiharmonic oscilla-
tions and relaxation oscillations. Especially for the flux G
=5 the found pattern looks like a sequence of pronounced
spikes joined by fragments of slow motion along the left
decreasing branch of N����.

The resulting crystal profiles are shown in Fig. 7. Basi-
cally, the profiles are scaled mirror images of the time-
dependent � as shown in Figs. 5 and 6, because the growth
velocity only weakly varies with time. As should be expected
the spatial oscillation period is orders or magnitude larger
than the atomic scale.

VI. DISCUSSION

We have presented a 1D model for OZ. The growth rate as
the central nonlinear coupling term between the solution and
the crystal was derived based on layer-by-layer crystal
growth mechanisms. For this purpose particle adsorption,
surface diffusion and finally desorption or inclusion pro-
cesses at the steps are taken into account. This way, adsorbed
particles do not only experience the local environment of
their adsorption site, but a much more averaged one depend-
ing strongly on the composition of the crystal surface. This is
an essential feature of the present model, because together
with volumetric species diffusion it may provide the syn-
chronization effect necessary to successfully describe the ex-
perimental findings in more than one dimension.

Our model �Eqs. �17�–�21�� differs in several respects
from the existing model of L’Heureux et al. �15,16�. �i� The

FIG. 6. �Color online� Dynamics for the asymmetrical system
�=3, �=3, 	0.5=1, �st=0.3. The left column presents the data ob-
tained for the total diffusion flux G=0.5, whereas the right one
exhibits the same data for G=5.

FIG. 7. Spatial patterns formed in the growing crystal.
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most essential difference is the choice of the growth mecha-
nism, i.e., the definition of the growth rate ri���. In Refs.
�15,16� a phenomenological equation based on local atom
adsorption �18� is formulated. It is one of the simplest poly-
nomial expression for ri��� which displays nonlinear behav-
ior. �ii� The boundary condition at z=0 used in �15,16� for
crystal growth from solution can be written

Di � Ci/�z = �i�r1 + r2� �49�

in our notation. Here one uses �1=1−�2=�. It is identical to
Eq. �19� if �d /dt���t�=0. But as soon as � changes with time
both boundary conditions are not identical. Actually, to de-
rive Eq. �49� one can formulate the mass balance in a newly
generated crystal layer. Then Eq. �49� only emerges if the �
value in the layer at some time, determining the nature of the
growth rates ri��� during the growth of the new layer is
identical to the � value in the resulting new layer. In general
this is not the case. Thus we feel that Eq. �19� is more gen-
erally valid although from a practical point of view no es-
sential difference should be present. �iii� We specify the gra-
dient at z=L whereas in �15,16� the concentration is given.
Our choice is conceptually more simple because the value of
L does not enter the calculations �see, e.g., Eq. �26��. How-
ever, the underlying physical picture does not change
whether the gradient or the concentration itself are fixed as
long as L is sufficiently large. �iv� Another distinctive differ-
ence is the explicit calculation of the diffusion field in the
solution above the crystal. We do not apply the boundary
layer approximation, regarding a crystal growing through a
supersaturated solution �15�, but we neglect the spatial
growth with respect to the diffusion. This way, we obtain a
source-sink system with a diffusion field that has to be
treated explicitly, because the interaction of particle accumu-
lation or depletion on the solution side and the autocatalytic
growth on the crystal side is essential for the existence of
OZ. In addition, we perform the stability analysis without
further approximations. This may be essential because the
oscillatory dynamics can stem from the counteraction of
strong “forces” mutually compensating each other at the first
approximation. We would like to mention that in �16� the
system of equations has been numerically solved without
invoking the boundary layer approximation. On a qualitative
level similar results were obtained as compared to the ana-
lytical treatment within the boundary layer approximation.
�v� The surface roughness parameter, used in �15�, is not
necessary in the present analysis.

The proposed growth mechanism is valid for a� ls� l. In
the limit of ls	a incorporation would be governed by the
local crystal composition, again. In case of ls	 l desorption
can be neglected and nearly every adatom will be incorpo-
rated regardless of its type and �. This would result in crys-
tals exhibiting the stoichiometric compositions �28� of the
influx.

The present model cannot exhibit the bistability found in
�15�, because the composition of the only stationary point is
determined by the influx ratio. Any crystal growth with a
composition different from this ratio will result in a buildup
of the currently “disfavored” component until its growth rate
increases. Thus the oscillations have to revolve around or run

into this fixed point. This corresponds well to the model
picture, where a bistability is only possible if either the su-
persaturation is not high enough with respect to the minor
component or if complementary crystals grow in close vicin-
ity.

The time scales of diffusion and crystal growth define the
qualitative behavior of the oscillations. At very low concen-
trations the crystal growth rate and consequently the changes
in crystal composition are very slow. The diffusive processes
on the other hand are fast enough to counteract this and no
oscillatory behavior is observed. With rising solute concen-
trations the growth rate increases as well, whereas the char-
acteristic speed of diffusion stays constant resulting in soft
transitions and sinusoidal oscillations. At even higher con-
centrations, the speed of crystal composition change super-
sedes the diffuse reaction of the solution by many orders,
creating sharp transitions, closely following N����. This
qualitative description coincides with the results from the
linear stability analysis. At low influx it is stable possessing
two imaginary eigenvalues with negative real parts. At Gc
the real part changes sign and the system becomes unstable.

Finally, the numerical calculation of asymmetrical sys-
tems show the stabilization of a formerly unstable branch of
N����. If the fixed point is shifted far enough onto the stable
branch, the trajectories slowly approach it along the
nullcline, but upon nearly reaching it are directed away with
the onset of new oscillations. The amplitude of these oscil-
lations can have continuously growing character or they can
exhibit certain characteristic values. This might be the onset
of frequency doubling and provide a route into chaotic be-
havior of the system. This however, is beyond the scope of
the present manuscript.

VII. CONCLUSION

We presented a boundary reaction diffusion model, de-
scribing OZ of crystals grown from solution. It applies a
mechanism including surface diffusion, which can be derived
from microscopic properties. OZ arises due to diffusive
buildup of the disfavored component above the crystal until
the autocatalytic growth process in combination with the
large population turn the crystal composition in favor of the
formerly disfavored species. A linear stability analysis was
carried out without further approximations. The results cor-
respond to the experimental findings of a supersaturation
threshold before the onset of OZ. Numerical simulations of
asymmetric cases show a stabilization of previously unstable
parts of the system.
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APPENDIX: EIGENVALUE EQUATION FOR THE
BOUNDARY-REACTION DIFFUSION MODEL

Let us convert the system of equations �33� and �34� into
a form more appropriate for its analysis. By virtue of
�33� both the wave numbers pi have the same argument �
� �−� /2 ;� /2�, i.e., pi= �pi �exp�i�� whose twice value gives
the argument of � and their absolute values obey the equality
�pi � = ��� � /Di�1/2.

A variable �
0 and parameter 	 introduced as follows:

�2 =
�D1D2�1�2

a2 ��� =
�D1D2�2

a2 e��1−2��+���� , �A1�

	2 =
�D1�1

�D2�2

=�D1

D2
f�

−2e−�+��1−2�� �A2�

enable us, first, to write

D1�1�p1� = a�	, D2�2�p2� = a�/	 �A3�

and, then, to represent Eq. �34� in the form

�2

g
ei2� = − 1 + ��1 − ����� + ��

��	�ei�

��	�ei� + 1

+ �� − ��
��/	�ei�

��/	�ei� + 1
� , �A4�

where the parameter g stands for the dimensionless species
flux casing the crystal growth

g = �D1D2�1�2G = �D1D2�2e��1−2��+�G . �A5�

Finally the split of equality �A4� into the real and imaginary
parts yields the desired coupled equations specifying actually
the eigenvalue �,

�2

g
cos�2�� = − 1 + ��1 − ����� + ��

��	���	 + cos ��
��	 + cos ��2 + sin2 �

+ �� − ��
��/	���/	 + cos ��

��/	 + cos ��2 + sin2 �
� , �A6a�

�2

g
sin�2�� = ��1 − �� sin ���� + ��

��	�
��	 + cos ��2 + sin2 �

+ �� − ��
��/	�

��/	 + cos ��2 + sin2 �
� . �A6b�

As follows from equations �A6� the value �=0 is not a root
of this system. So the considered instability is to arise
through the real part of � changing the sign with its imagi-
nary part having some finite value. Therefore to find the
instability boundary Re �=0 we can set �=� /4 in the given
equations. In this way the former equation �A6a� converts
into one specifying the value of � for chosen values of the
parameters �, �, �, and 	,

�� + ��
��2�	���2�	 + 1�

��2�	 + 1�2 + 1
+ �� − ��

��2�/	���2�/	 + 1�
��2�/	 + 1�2 + 1

=
1

��1 − ��
, �A7�

whereas the latter equation determines the critical value of
the diffusion flux gc

gc =
�

�2��1 − ��
��� + ��

	

��2�	 + 1�2 + 1

+ �� − ��
1/	

��2�/	 + 1�2 + 1
�−1

. �A8�

Returning to the dimensional variables we get expressions
�36� and �37�.
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